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We consider two-parameter families of C r-smooth, r�6, two-dimensional area-
preserving diffeomorphisms that have structurally unstable simplest heteroclinic
cycles. We find the conditions when diffeomorphisms under consideration pos-
sess infinitely many periodic generic elliptic points and elliptic islands.
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INTRODUCTION

It is well known that role which Poincare� 's ``New methods of celestial
mechanics'' have played for formation of the modern theory of nonin-
tegrable Hamiltonian systems. Among the numerous problems posed by
Poincare� in this memoir(1) one of the first is the following: to prove that
models of the classical mechanics possess infinitely many periodic motions.
Moreover, he formulates here the stronger hypothesis: periodic motions are
dense in the phase spaces of such type models. In this connection, it is very
important that Poincare� says about stable periodic motions, since ``the
especial value of these periodic solutions is explained by the fact that they
are the only possible breach across which we could penetrate into the topic
considered before as inaccessible.'' From this point of view, it is quite clear
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his position that, for the celestial mechanics, a problem on geodesic flows
on convex surfaces, (2) where the stable geodesics exist, is more important
than a problem on geodesic flows on surfaces with the negative curvature,
where all geodesics are unstable. Saying about a stability of periodic
motions Poincare� meant the ``perpetual stability,'' i.e., the Lyapunov
stability. From contemporary point of view based on the Kolmogorov�
Arnol'd�Moser theory (the KAM-theory), one can speak about the
Lyapunov stability of periodic motions in Hamiltonian systems only in the
case of two degrees of freedom, actually. Here, at general conditions,
quaranteering the twisting of a Poincare� map (see refs. 3�5), a fixed point
of this map is the elliptic point of the stable type. Such an elliptic point is
called generic. By the KAM-theory, the fixed generic elliptic point will be
enclosed by infinitely many closed invariant curves. Besides, it follows from
ref. 6 for the analytical case that, generally speaking, in any neighbourhood
of the generic elliptic point there exist infinitely many zones of instability,
in the sense of Birkhoff, containing periodic elliptic and hyperbolic points
and, moreover, the latters have transverse homoclinic orbits.

In the case of more degrees of freedom, the situation is more com-
plicated. Unlike the two-dimensional case, a generic n-elliptic point (with
n>1 pair complex conjugate eigenvalues on the unit circle) may be
unstable in the usual, (Lyapunov) sense: at some initial conditions near
this point the orbits can escape a small neighbourhood of the point due to
a mechanism of instability which is called the Arnol'd diffusion. However,
for the majority of initial conditions (the initial conditions on invariant
tori) the orbit never escapes the small neighborhood of the fixed point.

We note at once, that the Poincare� problem has not been solved until
now in any reasonable sense. The attempt of Poincare� , based on the small
parameter method, to prove the existence of infinitely many stable
(isolated) periodic motions in Hamiltonian systems close to nondegenerate
integrable ones was unsuccessful. (This method allows to prove only the
existence of a finite number of such orbits, but this number, however, tends
to infinity as the small parameter tends to zero). An another approach,
based on using the geometrical Poincare� �Birkhoff theorem and the KAM-
theory, allows, in principle, to establish the existence of an infinite set of
periodic motions, but does not exclude a possibility of their nonisolateness.
Naturally, the property of nonisolateness of periodic points is not general.
Combinating results of refs. 7 and 8 based on the typicalness2 of maps in
the smooth topology, one can conclude that, in general case, infinitely
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2 A property is called typical (and the systems possessing this property are called typical) if
it is carried out for a residual (second category) set of systems, i.e., for such a set which can
be presented as a countable intersection of open everywhere dense sets.



many generic elliptic points exist in any neighbourhood of the generic ellip-
tic fixed point.3

A weaker variant of the Poincare� problem��to prove the density of
periodic motions��has not been solved till now. But the much more
progress is achieved here. First of all, it is necessary to mention a number
of results about hyperbolic periodic orbits. For example, according to the
Birkhoff�Smale�Shilnikov theory, the set of orbits entirely lying in a small
neighbourhood of a transverse homoclinic orbit is a hyperbolic set contain-
ing infinitely many saddle periodic motions. The same type sets of orbits
can be found in levels of a Hamiltonian close to the level containing saddle
or saddle-focus equilibria with transverse homoclinic loops.(9�13)

In this connection, we note, that for C1-smooth symplectic dif-
feomorphisms, given on compact manifolds, the following properties are
typical:

(1) Hyperbolic periodic points are dense in the phase space.(14)

(2) Every hyperbolic periodic point has a transverse homoclinic
point in any neighbourhood of any point of the phase space.(8, 15, 16)

(3) If a symplectic diffeomorphism f is not Anosov, then the 1-elliptic
points4 of f are dense in the phase space.(16)

We note especially that essential circumstance that the enumerated
above properties of typical diffeomorphisms are established only in
C1-topology in the space of C1-diffeomorphisms. Moreover, the pointed
out properties can become nontypical if to require a more smoothness. So,
for example, according to the KAM-theory, elliptic periodic points of
Cr-smooth two-dimensional symplectic diffeomorphisms are typically stable
at r�5, (17) whereas, by property (2), all periodic elliptic points of typical
C1-diffeomorphisms are unstable.

In the present work we establish the existence of C r-smooth (r�6)
area-preserving symplectic diffeomorphisms which have, in a bounded
domain of the phase space, infinitely many isolated generic elliptic periodic
points and, hence, infinitely many elliptic islands. Note that we study two
parameter families of maps. The main our constructions under consideration
are diffeomorphisms with simplest structurally unstable heteroclinic cycles
(Fig. 1). Earlier, (18, 19) we considered general type diffeomorphisms with
similar cycles for the cases where such diffeomorphisms were contracting
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3 Probably, this result for analytical maps can be deduce from ref. 6 at more detailed con-
sideration.

4 A periodic point is called 1-elliptic if it has one pair of complex eigenvalues e\i. with
.{0, ?, and all other its eigenvalues do not belong to the unit circle. For two-dimensional
case, the 1-elliptic periodic points are elliptic.
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Fig. 1. The example of the simplest structurally unstable heteroclinic cycle.

the area or with ``alternating divergence.''5 We have established there
conditions of the existence of infinitely many stable periodic points, in the
first case, and conditions of the coexistence of infinitely many stable and
completely unstable periodic points, in the second case. Note that the
closure of a set of such points (in both cases of general and area-preserving
diffeomorphisms) contains points of the closure of a set of saddle periodic
points. In this connection, we could like to mention also one more perspec-
tive direction connected with studying questions of the existence of regions
of dense structural instability, so-called Newhouse regions, in the space of
symplectic maps or Hamiltonian flows. Recently, the existence of such
regions was proved for two-dimensional symplectic maps, namely, for the
families of standard maps(20) and conservative Henon maps.(21, 22)

1. STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let us consider a Cr-smooth (r�6) two-dimensional area-preserving
diffeomorphism T given in some bounded region G/R2. Suppose that T
has a simplest structurally unstable heteroclinic cycle (as in Fig. 1). We
assume that T has two saddle fixed points O1 and O2 with eigenvalues *i
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5 I.e., in the case where the diffeomorphism contracts the area in a neighbourhood of one of
saddle fixed pints belonging to the heteroclinic cycle and expands the area in a
neighbourhood of the other point.
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and *&1
i where |*i |<1, i=1, 2. Also, we assume that the invariant

manifolds behave in the following way: Wu(O1) and Ws(O2) intersect
transversely in the points of a heteroclinic orbit 112 , and Wu(O2) and
Ws(O1) have a quadratic tangency along the points of a heteroclinic orbit
121 . The set C=[O1 , O2 , 112 , 121] is the heteroclinic cycle under con-
sideration.

Let U be a sufficiently small neighbourhood of the heteroclinic cycle:
U is a union of small disks U1 and U2 containing the points O1 and O2

respectively and of a finite number of small disks surrounding those points
of orbits 112 and 121 which lie outside U1 and U2 (Fig. 2).

The maps T0i#T |Ui
, i=1, 2, are called local maps. We will show (see

Lemma 1) that in Ui one can to introduce such Cr&1 (canonical) coor-
dinates (xi , yi ) that the map T0i is written in the following form

x� i =*i xi (1+u (i)
1 xi yi+o(xi yi ))

(1.1)
y� i =*&1

i yi (1&u (i)
1 xi yi+o(xi yi ))

where coefficient u (i)
1 is an invariant of C p-smooth ( p�3) canonical

changes of variables. Clearly, the equations of manifolds W s
loc(Oi ) and

Wu
loc(Oi ) are yi=0 and xi=0 respectively.

Choose two pairs of heteroclinic points: M +
1 (x+

1 , 0) # 121 and
M&

1 (0, y&
1 ) # 112 in U1 , and M +

2 (x+
2 , 0) # 112 and M &

2 (0, y&
2 ) # 121 in U2 .

Fig. 2. The neighbourhood of the heteroclinic cycle.
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Fig. 3. Rectangle neighbourhoods of heteroclinic points and schematic actions of global
maps T12 and T21 .

Without loss of generality, we assume that x+
2 >0, y&

1 >0. Let 6 +
i /Ui

and 6 &
i /Ui be sufficiently small rectangle neighbourhoods of the points

M+
i and M &

i (Fig. 3). We will denote coordinates (xi , yi ) on 6 +
i and 6 &

i

as (x0i , y0i ) and (x1i , y1i ), respectively.
Obviously, there are positive integers n1 and n2 such that T n1(M &

1 )=
M+

2 , T n2(M &
2 )=M +

1 . The corresponding maps T12#T n1 acting from 6 &
1

to a small neighborhood of M +
2 and T21#T n2 acting from 6&

2 to a small
neighborhood of M +

1 are called global maps, they are defined by the orbits
close to a piece of the heteroclinic orbit 112 and a piece of the heteroclinic
orbit 121 respectively.

The map T12 can be represented as follows

x� 02&x+
2 =a12x11+b12( y11& y&

1 )+O[( |x11|+| y11& y&
1 |)2]

(1.2)
y� 02=c12x11+d12( y11& y&

1 )+O[( |x11|+| y11& y&
1 | )2]
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where d12{0 since W u(O1) and W s(O2) intersect transversally at the point
M+

2 .
The map T21 can be written in the form

x� 01&x+
1 =a21x12+b21( y12& y&

2 )+O[( |x12 |+| y12& y&
2 | )2]

(1.3)
y� 01=c21 x21+d21( y12& y&

2 )2

+O[(x2
12+|x12 | | y12& y&

2 |+| y12& y&
2 |3]

where d21{0 because Wu(O2) and W s(O1) have a quadratic tangency at
the point M +

1 ; and b21c21=&1 since T21 preserves the area.
Diffeomorphisms, which possesses a pair of saddle fixed points close to

O1 and O2 and two heteroclinic orbits (transverse one and the other corre-
sponding to quadratic tangency of the invariant manifolds) close to 112

and 121 , respectively, form a locally connected codimension one bifurcation
surface H in the space of C r-smooth area-preserving diffeomorphisms
equipped with C r-topology. We will study, for diffeomorphisms from H, the
structure of the set N of orbits entirely lying in U. Analogously to papers
refs. 18 and 19, where general diffeomorphisms were considered, one can be
established that area-preserving diffeomorphisms with structurally unstable
heteroclinic cycles are divided into three classes by the type of description of
the structure of N.

If *1>0, *2>0, c21<0, d21<0 we will say that diffeomorphism T
under consideration belongs to the first class. (An example of such a dif-
feomorphism is shown in Fig. 4a). In this case the structure of N is trivial,
namely, N=O1 _ O2 _ 112 _ 121 .

Diffeomorphism T under consideration with *1>0, *2>0, c21<0,
d21>0 belongs to the second class (an example is in Fig. 4b). For such
diffeomorphisms the set N admits a complete description in terms of the
symbolic dynamics and, furthermore, all orbits of N, expect for 121 , are
hyperbolic. It is important also that the structure of N is not changed at
(small) perturbations of T inside H.

We group the diffeomorphisms corresponding to the other (different
from *1>0, *2>0, c21<0) combinations of signs of *1 , *2 , c21 and d21 to
the third class (these are, for instance, the diffeomorphisms with the cycles
shown in Figs. 4c, d). Note, that, in the case of diffeomorphisms of the
third class, the set N contains nontrivial hyperbolic subsets which, in
general, do not coincide with N"121 .(18, 19)

Diffeomorphisms of the third class can be subdivided into several
types each of which corresponds to a specific combination of the signs of
the quantities *1 , *2 , c21 and d21 . In the cases where *1 or *2 are negative
the signs of c21 and d21 may change depending on the choice of the points
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Fig. 4. The examples of diffeomorphisms with structurally unstable heteroclinic cycles: (a) of
the first class; (b) of the second class and (c), (d) of the third class.

M&
1 and M +

2 : we may assume in this case, without loss of generality, that
c21>0 when *2 is negative and d21>0 when *1 is negative. As a conse-
quence, we have 7 possible combinations of signs of quantities *1 , *2 , c21

and d21 corresponding to the diffeomorphisms of the third class (Table 1).
The set H of diffeomorphisms of the third class will be labeled as H3 . To
specify to which of the seven types belong the diffeomorphisms on H3 we
will use the notation H :

3 , :=1,..., 7.

328 Gonchenko and Shilnikov



Table 1

H 1
3 H 2

3 H 3
3 H 4

3 H 5
3 H 6

3 H 7
3

*1 + + + + & & &
*2 + + & & + + &
c21 + + + + + & +
d21 + & + & + + +

The main attention will be concentrated in studying diffeomorphisms
of the third class since both elliptic and parabolic periodic points may exist
at such diffeomorphisms.

Recall that a periodic point of diffeomorphism T is called the elliptic
point of period p if roots of the characteristic equations (i.e., eigenvalues of
the matrix of the differential D(T p)) lie on the unit circle and are complex
conjugate. If, to addition, the map T p in some neighbourhood of the ellip-
tic point is reduced to the following complex form

z� =ei�z+iei�h(�) z2z*+O( |z|4) (1.4)

where h(�){0, �{2?�3, �{?�2, then, as it follows from the KAM-
theory, such a point is the elliptic point of stable type. It is called also
generic elliptic point.

A periodic point is called parabolic if both roots of the characteristic
equations are equal either to +1 or to &1. At general conditions, such a
point is unstable in the first case, and it may be both stable and unstable
in the second case.(4)

Diffeomorphisms with heteroclinic tangencies are remarkable because
they possess moduli (i.e., continuous invariants of the topological con-
jugacy). In this case, two diffeomorphisms with different values of the
moduli are not conjugate and, as a consequence, a continuum of classes of
topological conjugacy exists. One of the moduli is the quantity

%=
ln |*2 |
ln |*1|

(1.5)

discovered by Palis.(23) In the case of area-preserving diffeomorphisms of
the third class, the quantity % is an 0-modulus also. More exactly, % is a
modulus of topological conjugacy on the set of non-wandering orbits
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entirely lying in a small neighbourhood of the heteroclinic cycle C. Dif-
feomorphisms of the third class have one more 0-modulus(18)

{0=[{&(n1+n2)](mod(1+%))

where

{=&
1

ln |*1|
ln

|c21x+
2 |

| y&
1 |

(1.6)

Note, that {0 depends also on coefficients of the global maps T12 and T21 .
Nevertheless, {0 is an invariant of T (in that sense that {0 does not depend
on both choosing pairs of heteroclinic points (of the orbits 112 and 121)
and canonical coordinate transformations that preserve form (1.1) of the
local map T0i ).

Note also, that in the case of general two-dimensional diffeomorphisms
with a homoclinic tangency the following quantity (introduced in ref. 24)

%0=&
ln |*|
ln |#|

is a modulus, where * and #, |*|<1, |#|>1, are multipliers of a periodic
orbit whose invariant manifolds have the tangency. But %0#1 for area-
preserving diffeomorphisms with a homoclinic tangency since ##*&1.
Moreover, such diffeomorphisms (with the tangency) can possess elliptic
(parabolic) periodic points only in the case where some quantity {~
(analogous to {) will be close to an integer (see refs. 25 and 26 for more
details).

It follows from definition of 0-modulus that arbitrary change of its
value leads to bifurcations of nonwandering orbits (in particular, periodic
and homoclinic ones). First of all, we will interest in bifurcations of so-
called single-round periodic orbits. Recall, that fixed points of the following
maps

Tij#T n2+ j+n1+i : 6 +
1 � 6 +

1 (1.7)

defined in one round along the neighbourhood of the heteroclinic cycle C,
corresponds to such orbits. (In other words, the maps Tij are the Poincare�
maps (or the first return maps) for single-round periodic orbits).6
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6 The map Tij is represented as the following superposition of the local and global maps

Tij#T21T j
02T12T i

01 : 6 +
1 � 6 +

1

where powers i and j of the local maps T01 and T02 can be how much large here.



We consider the map Tij at sufficiently large i and j. Let % and { be
such that the following inequality takes place

&1
ij<i& j%+{& j* j

2

x+
2 y&

2

ln |*1| \u (2)
1 &%u (1)

1

c21x+
1

y&
2 +<&2

ij (1.8)

where quantities &1, 2
ij are of the order O(*2i

1 +*2j
2 ).

Theorem 1. Let % and { satisfy inequality (1.8). Then the map Tij

has a generic elliptic fixed point.

Note, that inequality (1.8) has infinitely many integer solutions (with
respect to i and j) for every % and { from a set of points (%, {) which is
dense in the half-plane %>0. Such % and { are connected by strong
arithmetical relations: they admit so-called ``abnormally good'' nonhomo-
geneous approximations (exponential ones) by rational numbers. In other
words, for such % and {, the straight line i= j%&{ approach abnormally
(exponentially) close to points of the integer-value lattice: here, the
minimum of the distance has the order O( j* j

2), when it is ``normally'' if
this minimum is of the order O( j &1)). We will call abnormally well
approximated those % and { for which inequality (1.8) has infinitely many
integer solutions.

Theorem 2. If % and { are abnormally well approximated, then dif-
feomorphism T has infinitely many single-round generic elliptic periodic
points (each of which lies inside the own elliptic island). Moreover, the
closure of these points contains the heteroclinic cycle C.

This statement7 admits also the following additional refinement:

If the quantity Q#u (2)
1 &%u (1)

1 (c21 x+
1 �y&

2 ) is not equal to zero, then values of % in
hypothesis of Theorem 2 are irrational.

Note, that the quantity Q is an invariant in that sense that it does not
depend on a choose of pairs of heteroclinic points of the orbits 112 and 121

(see Lemma 5 below).

Consequence. Diffeomorphisms with infinitely many elliptic
islands are dense in H3 .
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systems with homoclinic tangencies. It was proved there that if main 0-moduli are abnor-
mally well approximating, then the corresponding system possesses infinitely many
asymptotically stable periodic orbits (sinks).



Since % is an 0-modulus of diffeomorphisms of the third class, it is
naturally to consider % as a control parameter at studying bifurcations in
the set of diffeomorphisms from H3 . The following theorem takes place

Theorem 3. Let T% be a one-parameter family of diffeomorphisms
in H3 depending smoothly on the parameter %. Then, in any interval of
variation of %, values of the parameter are dense at which diffeomorphism
T% has a single-round parabolic periodic point. Such points are both types:
with eigenvalues &1=&2=+1 and &1=&2=&1. Furthermore, the point is
unstable in the first case and stable in the second case.

2. PROPERTIES OF THE LOCAL MAPS

Suppose that a C r-smooth two-dimensional area-preserving map F0

has a saddle fixed point O with eigenvalues * and *&1 where |*|<1. Let
F= be a parameter family which is C r-smooth in both variables and param-
eters and F= |==0

#F0 . One can assume that, for all sufficiently small =, the
fixed point O= is in the origin and that the coordinates, x and y, are such
that the axes x and y correspond to the proper subspaces for *(=) and
*(=)&1, respectively. In this case the map T0(=)#F= |U0

, where U0 is a small
neighbourhood of the point O= , can be written in the form

x� =*(=) x+.(x, y, =), y� =*(=)&1 y+�(x, y, =) (2.1)

where functions . and � and their first derivatives in coordinates vanish at
x= y=0 for all small =. In this case the equations of the local stable and
local unstable manifolds can be written as y=hs(x, =) and x=hu( y, =),
respectively, where hs and hu are C r-smooth and such that

hs(0, =)=
�hs(0, =)

�x
=0, hu(0, =)=

�hu(0, =)
�y

=0

If to make two consecutive changes of variables of the form

!=x&hu( y, =), '= y and !=x, '= y&hs(x, =) (2.2)

each of which is C r-smooth and area-preserving, then the map T0(=) is
brought to the following form (we retain the old coordinate notation):

x� =*(=) x+ f (x, y, =) x, y� =*(=)&1 y+ g(x, y, =) y (2.3)

where f (0, 0, =)=0, g(0, 0, =)=0. Form (2.3) corresponds to the case where
both the local stable and local unstable invariant manifolds of the point O=
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are straightened: the equation of W s
loc(O=) and W u

loc(O=) are y=0 and
x=0, respectively (for all sufficiently small =). Form (2.3) of the map T0(=)
is more convenient than (2.1) but its using gives some technical difficulties.
This is connected, in particular, with the fact that ``too much'' nonresonant
terms are in the right-hand side of (2.3). Thus, the question is very impor-
tant on a reduction of map (2.3) to a more simple form by means suf-
ficiently smooth and area-preserving changes of coordinates.

It is clear that the simplest form is the linear form of T0(=). But only
C1-linearization is possible here.(28) On the other hand, for the analytical
case, J. Moser(29) has established that the map T0 can be reduced to the
following normal form

x� =*B(xy) x, y� =*&1B&1(xy) y (2.4)

where

B(xy)#1+;1 } xy+;2 } (xy)2+ } } } +;n } (xy)n+ } } }
(2.5)

B&1(xy)#1+;� 1 } xy+;� 2 } (xy)2+ } } } +;� n } (xy)n+ } } }

are serieses in monomials (xy) converging in some neighbourhood of the
origin. Since the Jacobian of (2.4) is equal to one identically, it follows that
coefficients ;i and ;� i are connected by some relations. For example,
;1=&;� 1 , ;� 2=;2

1&;2 etc.
In the general smooth case (r��) the map T0(=) can be brought to

some finitely smooth ``normal forms'' which, in some sense, are similar to
(2.4). For our goal it will be sufficient the first order ``normal form'' whose
existence is proved in the following lemma

Lemma 1. For all sufficiently small = there exists a canonical
C r&1-change of variables (C r&2-smooth in parameters) bringing T0(=) to
the form

x� =*(=) x(1+;1(=) xy+O[x2 | y|+ |x| y2])
(2.6)

y� =*&1(=) y(1&;1(=) xy+O[x2 | y|+|x| y2])

Proof. By (2.3), the C r-map T0(=) at r�3 can be written in the
following ``extended form''

x� =*(=) x+.1(x, =)+�1( y, =) x+ f1(x, y, =) x2y
(2.7)

y� =*&1(=) y+.2(x, =) y+�2( y, =)+ g1(x, y, =) xy2
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where .1 , �2 # C r, .1(0, =)=�.1(0, =)��x#0, �2(0, =)=��2(0, =)��y#0,
.2(0, =)=�1(0, =)#0. Lemma 1 states that T0(=) can be brought to the
form where .i#0, �i#0, i=1, 2. Note, that functions .i and �i are non-
resonant (i.e., they do not contain resonant monomials).

We will use canonical changes of variables. Recall, that the canonical
change is constructed by means of the generating function as follows. Let
V(x, ', =) be a sufficiently smooth function of variables x, ' and parameters
= and such that V(0, 0, 0)=0 and Vx'(0, 0, 0){0. Then, the canonical
change of variables with given generating function V is the change
(x, y) � (!, ') of the form

!=
�V(x, ', =)

�'
, y=

�V(x, ', =)
�x

If V is sufficiently smooth, then, for small x, ' and =, the canonical change
is a diffeomorphism and preserves the area. Note to the point, that changes
(2.2) are both canonical with generating functions

x'+|
'

0
hu(t, =) dt and x'&|

x

0
hs(t, =) dt

respectively.8

For proving the lemma we will make two consecutive canonical
changes with generating functions of the following form

V1=x'+v1(x, =) ' and V2=x'+v2(', =) x

where v1(0, =)=�v1(0, =)��x#0, v2(0, =)=�v2(0, =)��'#0. As we will show,
the first and second changes (with appropriate functions v1 and v2)
annihilate functions .1 and �2 in (2.7), respectively; after that, as we will
show, functions .2 and �1 vanish automatically because symplecticity.

The first change is

!=
�V1(x, ', =)

�'
#x+v1(x, =), y=

�V1(x, ', =)
�x

#'+v~ 1(x, =) ' (2.8)

where v~ 1#�v1(x, =)��x and v~ 1(0, =)#0.
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The first equation of (2.7) is transformed as !� =x� +v1(x� , =). Note that

v1(x� , =)=v1(*x+.1(x, =), =)+[v1(*x+.1(x, =)+�1( y, =) x+ f1 x2y, =)

&v1(*x+.1(x, =), =)]

=v1(*x+.1(x, =), =)+O(x2y)

since v1(0, =)=�v1(0, =)��x#0. Also

�1( y, =) x O �1('+v~ 1(x, =) ', =) x

=�1(', =) x+[�1('+v~ 1(x, =) ', =)&�1(', =)] x

O �1(', =) !+O(!2')

since v~ 1(0, =)#0. Then, one has

!� =*(=)(!&v1(x, =))+.1(x, =)+�1( y, =) x

+v1(*(=) x+.1(x, =)+�1( y, =) x+ f1 x2y, =)+ } } }

=*(=) !+[.1(x, =)&*(=) v1(x, =)+v1(*(=) x+.1(x, =), =))]

+�1(', =) !+ } } } (2.9)

where the ellipsis denote terms of the order O(!2').
Assume now that the expression in the square brackets in (2.9) is

equal to zero, i.e., v1(x, =) satisfies the following equation

v1[*(=) x+.1(x, =), =]=*(=) v1(x, =)&.1(x, =) (2.10)

Let us show that Eq. (2.10) has a solution in the class of C r-functions. Note
for this, that (2.10) can be considered as some functional equation which
defines an invariant curve of the form u=v(x, =) for the following map of
the plane:

u� =*(=) u&.1(x, =), x� =*(=) x+.1(x, =) (2.11)

where .1(0, =)=�.1(0, =)��x=0. Show that map (2.11) has such an
invariant curve. Consider the variables z=u+x. Then, (2.11) can be
rewritten as

z� =*(=) z, x� =*(=) x+.1(x, =) (2.12)

Since |*|{1, .1 # C r and r�3, this map (as one-dimensional in x) admits
a C r-linearization(28) for all sufficiently small x and =. The corresponding
linear map, z� =*(=) z, x� =*(=) x, has a fixed point, which is so-called a
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``diacritic node.'' In this case, every straight line, passing through this point,
is invariant. Thus, map (2.12) has a C r-smooth invariant curve, z=
x+v1(x, =), that touches the line z=x. As a consequence, map (2.11) has
a C r-smooth invariant curve whose equation is u=v1(x, =) where v1(0, =)=
�v1(0, =)��x=0, as was to be proved.

Thus, after change (2.8) the first equation of (2.7) is transformed as

!� =*(=) !+�1(', =) !+O(!2') (2.13)

(but functions in the right side of (2.13) is C r&1-smooth, in general, since
change (2.8) is C r&1). The second equation of (2.7) after change (2.8) takes
the form '� = y� (1+v̂1(x� , =)) where

v̂1#&
v~

1+v~
and v̂1(0, =)#0

Thus,

'� =(*(=)&1 y+�2( y, =)+.2(x, =) y)(1+v̂1(x� , =))+O(!'2)

=*(=)&1 '+�2(', =)+.̂2(!, =) '+O(!'2)

since

�2('(1+v̂1(x, =)), =)=�2(', =)+[�2('(1+v̂1(x, =)), =)&�2(', =)]

=�2(', =)+O(!')

So, after canonical C r&1-change (2.8), map (2.7) takes the form (for
the old coordinate notations)

x� =*(=) x+�1( y, =) x+ f 1
1(x, y, =) x2y

(2.14)
y� =*(=)&1 y+�2( y, =)+.̂2(x, =) y+ g1

1(x, y, =) xy2

where �2 # C r, �2(0, =)=��2y(0, =)��y#0, �1(0, =)#0, .̂2(0, =)#0.
Conduct now the second canonical change of coordinates (i.e., with

the generating function V2=x'+v2(', =) x). This change has the form

!=x+v~ 2(', =) x, y='+v2(', =) (2.15)

where v~ 2=�v2 ��'. Since v2(0, =)=�v~ 2(0, =)��'=0, the second equation of
(2.15), by the implicit function theorem, can be solved with respect to ':
'= y+r2( y, =). Furthermore, r2( y, =)+v2(r2( y, =), =)#0 and r2(0, =)=
�r2(0, =)��y=0. Thus, change (2.15) can be represented as

!=x+v~ 2(', =) x, '= y+r2( y, =)
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Note, that this change is of the same type as (2.8). Therefore, in the
same way, it is shown that the second equation of (2.14) is transformed as
follows

'� =*(=)&1 '+.̂2(!, =) '+O(!'2) (2.16)

Finally, we obtain that, after two consecutive canonical changes (2.8)
and (2.15), map (2.14) takes the following form (in the old coordinate
notations)

x� =*(=) x+�� 1( y, =) x+ f� 1(x, y, =) x2y
(2.17)

y� =*(=)&1 y+.̂2(x, =) y+ g~ 1(x, y, =) xy2

where the right side is C r&1, in general, and �� 1(0, =)#0, .̂2(0, =)#0.
Since the map (2.17) preserves the area, its Jacobian is equal to one

identically, i.e.,

J(x, y, =)=1+*(=)&1 �� 1( y, =)+*(=) .̂2(x, =)+O(xy)#1

One has J(0, y, =)=1+*(=)&1 �� 1( y, =)#1. It implies that �� 1( y, =)#0.
Further, J(x, 0, =)=1+*(=) .̂2(x, =)#1, that is .̂2(x, =)#0. This com-
pletes the proof of the lemma.

Coordinates of Lemma 1 are very convenient since iterations of the
map T0 , which is given in form (2.6), are asymptotically close to iterations
of the map T0 in the case where it is represented in the Birkhoff�Moser
normal form (2.4). Namely, the following lemma takes place

Lemma 2. If T0(=) has form (2.6), then T k
0(=) can be represented as

follows

xk=*(=)k x0(1+k*(=)k ;1(=) x0 yk)+O(*(=)2k)
(2.18)

y0=*(=)k yk(1+k*(=)k ;1(=) x0yk)+O(*(=)2k)

where the functions in the right-hand side of (2.18) are C r&1-smooth and
uniformly bounded in k with all derivatives up to order (r&2).

Proof. The proof is based on the method of boundary value
problem.(30, 32) By Lemma 1, the map T0(=) (C r&1-smooth) can be written
in the form

x� =*(=) x+ f� (x, y, =)#*(=) x(1+;1(=) xy)+O(x2y2+|x3y| )
(2.19)

y� =*(=)&1 y+ g~ (x, y, =)#*(=)&1 y(1&;1(=) xy)+O(x2y2+|xy3| )
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Consider the following operator P:

x� j =*(=) j x0+ :
j&1

s=0

*(=) j&s&1 f� (xs , ys , =)

(2.20)

y� j =*(=)k& j yk& :
k&1

s= j

*(=)s& j+1 g~ (xs , ys , =)

(where j=0, 1,..., k) defined on the set

R($)=[z=[(xj , yj )]
k
j=0 , &z&�$]

where &z& is the maximum of the absolute value of components xj , yj of
vector z and $ is a positive small quantity. If z0=[(x0

j , y0
j )]k

j=0 is a fixed
point of P, then the following diagram takes place

(x0
0 , y0

0) w�
T0 (x0

1 , y0
1) w�

T0 } } } w�
T0 (x0

k , y0
k)

It was proved in ref. 32 that, for all sufficiently small = and $=$0 and
&x0&�$0 �2, | yk |�$0 �2, operator P maps region R($0) into itself and is
contracting. Thus, map (2.20) has a unique fixed point z0=[(x0

j (x0 , yk),
y0

j (x0 , yk)]k
j=0 . Due to the contractibility, its coordinates x0

j and y0
j can be

found, for example, by the method of successive approximations. As an
initial approximation one takes the following solution of the linear problem

x (0)
j =*(=) j x0 , y (0)

j =*(=)k& j yk

In virtue of (2.19) and (2.20), for the first approximation we have such a
representation

x (1)
j =* jx0+ :

j&1

s=0

* j&s[;1*2s*k&sx2
0yk+O(*2s*k+*2k)]

=* jx0+;1 j* j+kx2
0 yk+O(* j+k)

(2.21)

y (1)
j =*k& jyk& :

k&1

s= j

*s& j+1[&*&1;1 *s*2k&2sx0y2
k+O(*2k+*s*3k&3s)]

=*k& jyk+;1(k& j) *2k& jx0y2
k+O(*2k& j )

where *#*(=), ;1#;1(=). It is clear that next approximations have the
same form. Thus, we have the following representation for coordinates of
the fixed point of P
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x0
0=x0

y0
k= yk

(2.22)
x0

j =* jx0(1+;1 j*kx0yk)+O(* j+k)

y0
j =*k& jyk(1+;1(k& j) *kx0yk)+O(*2k& j ), j=0, 1,..., k

Formulas (2.18) follow now from (2.22) (the first for j=k and the second
for j=0).

Estimates for derivatives of functions x0
j and y0

j with respect to the
boundary conditions x0 and yk and parameters = are found as follows (see
ref. 27 for more details). First, we note that functions x0

j and y0
j has the

same smoothness as the map T0 . Indeed, x0
j and y0

j can be solved with
respect to x0

0 and y0
0 as j th iterations of smooth map T0 : x0

j =x~ j (x0
0 , y0

p 0),
y0

j = y~ j (x0
0 , y0

0). The equation y0
k= y~ k(x0

0 , y0
0) is solved with respect to y0

0

by the implicit function theorem, since &(�y0
0 ��yk)&1& is bounded and

separated from zero.(32) Thus, y0
0= y$(x0 , yk) # C r&1, in general. Since

x~ j , y~ j # C r&1 too, the functions

x0
j (x0 , yk)#x~ j (x0 , y$k(x0 , yk)), y0

j (x0 , yk)#y~ j (x0 , y$k(x0 , yk))

are C r&1-smooth also.
Let us show that for derivatives

8 j
pqv#

�lx0
j

�x p
0 �yq

k �=v , 9 j
pqv#

�ly0
j

�x p
0 �yq

k �=v , l= p+q+v�r&2

the statement of the lemma is also true. The formal differentiation of both
sides of operator P ( p times in x0 , q times in yk and v times in =) gives us
the following formula

8� j
pqv= :

j&1

s=0

* j&s&1 \ �f�
�xs

8 s
pqv+

�f�
�ys

9 s
pqv ++ f l

j

(2.23)

9� j
pqv=& :

k&1

s= j

*s& j+1 \ �g~
�xs

8s
pqv+

�g~
�ys

9 s
pqv ++ g l

j

where the functions f l
j and g l

j depend only on derivatives of orders less than
l. Under hypothesis that norms of these last derivatives satisfy, estimates of
Lemma 2 we can calculate that the norms of functions f l

j and g l
j satisfy the

same estimates but with new weight coefficients. Now, since operator (2.23)
is linear and contracting for $�$0 , the norms of derivatives of the order
l will also satisfy required estimates. By induction in l, we obtain required
proposition. This completes the proof of the lemma.

339On Two-Dimensional Area-Preserving Diffeomorphisms



File: 822J 703620 . By:XX . Date:24:10:00 . Time:23:24 LOP8M. V8.B. Page 01:01
Codes: 1100 Signs: 500 . Length: 44 pic 2 pts, 186 mm

3. CONSTRUCTION OF THE MAPS Tij

We will find here formulas for the first return maps Tij (see formula
(1.7) above) for various sufficiently large i and j.

The set of initial points in 6 +
: , :=1, 2, whose orbits get into 6 &

: ,
consists of infinitely many horizontal strips _0:

k =6 +
: & T &k

0: 6 &
: . These

strips accumulate on W s
loc(O:) as k � � (Fig. 5a). Images of strips _0:

k with

Fig. 5. Schematic actions of local (saddle) maps: (a) at backward iterations and (b) at
forward iterations.
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respect to the maps T k
0: are vertical strips _1:

k #T k
0:(_0:

k ) in 6 &
: which

accumulate on W u
loc(O:) (Fig. 5b). Without loss of generality, we may

assume that 6 +
: and 6 &

: contain entirely the strips _0:
k and _1:

k with
numbers k�k� : and T k

0:6 +
: & 6 &

: =< if k<k� : , where k� 1 and k� 2 are some
sufficiently large integers.

By Lemma 2, the map T k
0: : _0:

k � _1:
k can be represented in the follow-

ing form:

x� :=*k
: x:(1+k*k

: x: y� :u (:)
1 )+O(*2k

: )
(3.1)

y:=*k
: y� :(1+k*k

: x: y� : u (:)
1 )+O(*2k

: )

where (x: , y:) # _0:
k , (x� : , y� :) # _1:

k .
Evidently, orbits from N must intersect the neighbourhood 6 +

2 in
intersection points of images T12(_11

m ) of the strips from 6 &
1 with the strips

_01
k for all possible m�k� 1 and k�k� 2 . Analogously, intersection points of

orbits from N with the neighbourhood 6 +
1 must belong to the intersections

of images T21(_12
j ) of the strips from 6 &

2 with the strips _01
i for various

i�k� 1 and j�k� 2 .
Since 112 is the orbit of transverse intersection of manifolds Wu(O1)

and Ws(O2), the intersection of any strip T12 _11
k with any strip _02

j

consists of one connected component if k and j are sufficiently large (see

Fig. 6. The images T21(_12
j )/6 +

1 of the strips _12
j /6 &

2 have a shape of horseshoes.
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(1.2)). It is seen from (1.3) that the images T21(_12
j ) of the strips _12

j have
a shape of horseshoes accumulated on the ``parabola'' T21(W u

loc(O2))/
Wu(O2) & 6 +

1 (Fig. 6). Orbits of the set N must intersect the neighbourhood
6 +

1 at points of intersection of the horseshoes T21(_12
j ) and the strips _01

i

for i�k� 1 and j�k� 2 . Hence, the structure of N depends essentially on the
structure of the set of these intersections.

We will speak that the horseshoe T21(_12
j ) has a regular intersection

with the strip _01
i , if the following conditions are fulfilled: (1) the set

T21(_12
j ) & _01

i consists of two connected components, 23
ij and 24

ij ; (2) the
map T21 T j

02 , restricted onto the preimage (T21T j
02)&1 2:

ij/_02
j of the com-

ponent 2:
ij , :=3, 4, is a saddle map in the sense of ref. 30 (roughly

speaking, this map is expanding with respect to coordinate y02 and contrac-
ting with respect to coordinate x02).

Different types of intersections of the horseshoe T21(_12
j ) with the

strips lying in 6 +
1 are shown in Fig. 7. The horseshoe has regular inter-

section with the strip _01
i , irregular intersection with _01

k and empty
intersection with _01

s .
The following lemma, which has been proved in ref. 19 (see also

ref. 18), gives sufficient conditions for regular and empty intersections of
the horseshoes and the strips.

Lemma 3. There are a positive constant S1 and sufficiently large
integers k� 1 and k� 2 such that for any i�k� 1 , j�k� 2

Fig. 7. Types of intersections of the horseshoe T21(_12
j ) with the strips. The horseshoe has

a regular intersection with the strip _01
i , an irregular intersection __01

k and empty intersection
with _01

s .
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(1) if the inequality

d21(* i
1 y&

1 &c21* j
2 x+

2 )>S ij(k� 1 , k� 2) (3.2)

is fulfilled where Sij=S1( |*1| i+|*2 | j )( |*1| k� 1+|*2 |k� 2+i |*1| i+ j |*2 | j ), then
the intersection of the horseshoe T21(_12

j ) with the strip _01
i is regular;

(2) if the inequality

d21(* i
1 y&

1 &c21* j
2 x+

2 )<&Sij (k� 1 , k� 2) (3.3)

is fulfilled, then T21(_12
j ) & _01

i =<.

Note, that for diffeomorphisms of the first class (*1>0, *2>0, d21<0,
c21<0) inequality (3.3) is fulfilled for all i�k� 1 , j�k� 2 ; i.e., in this case
T21(_12

j ) & _01
i =< for all i and j large enough. (In fact, the horseshoes

T21(_12
j ) and the strips _01

i lie in different components of 6 +
1 "W s

loc(O1).)
On the other hand, for diffeomorphisms of the second class (*1>0, *2>0,
d21>0, c21<0) inequality (3.2) is fulfilled for all i�k� 1 , j�k� 2 ; i.e., in this
case the intersections of the horseshoes T21(_12

j ) and the strips _01
i are

regular for all sufficiently large i and j.
Unlike two above cases, diffeomorphisms of the third class can possess

also irregular intersections of the horseshoes and the strips. This implies a
possibility of the existence of nonhyperbolic periodic orbits. The main
attention will be give to single-round periodic orbits of such a type.

Recall, that a single-round periodic orbit has exactly one intersection
point with every of neighbourhoods 6 +

s and 6 &
s , s=1, 2. Let

M01(x01 , y01) # _01
i , M11(x11 , y11) # _11

i
(3.4)

M02(x02 , y02) # _02
j , M12(x12 , y12) # _12

j

be intersection points of the orbit with the corresponding strips where
i�k� 1 , j�k� 2 . Then, M01=T i

01(M01), M02=T12(M11), M12=T j
02(M02),

M01=T21(M12). Thus, the point M01 is a fixed point of the following map

Tij#T21T j
02T12 T i

01 : _01
i � 6 +

1

In virtue of (3.1), coordinates of the points M01 and M11 satisfy equations

x11=* i
1x01(1+iu (1)

1 * i
1x01 y11)+O(*2i

1 )
(3.5)

y01=* i
1 y11(1+iu(1)

1 * i
1x01 y11)+O(*2i

1 )
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and coordinates of the points M02 and M12 satisfy equations

x12=* j
2 x02(1+ ju(2)

1 * j
2x02 y12)+O(*2j

2 )
(3.6)

y02=* j
2 y12(1+ ju(2)

1 * j
2x02 y12)+O(*2j

2 )

Thus, in virtue of (1.2) and (1.3), the map Tij can be written in the form

x� 02&x+
2

=a12* i
1 x01(1+iu (1)

1 * i
1x01 y11)+b12( y11& y&

1 )+h1(x01 , y11)

* j
2 y� 12(1+ ju (2)

1 * j
2x� 02 y� 12+O(* j

2))

=c12* i
1x01(1+iu (1)

1 * i
1x01 y11)+d12( y11& y&

1 )+h2(x01 , y11)
(3.7)

x� 01&x+
1

=a21* j
2 x02(1+ ju (2)

1 * j
2x� 02 y� 12)+b21( y� 12& y&

2 )+h3(x� 02 , y� 12)

* i
1 y� 11(1+iu (1)

1 * i
1x� 01 y� 11+O(* i

1))

=c21* j
2x� 02(1+ ju (2)

1 * j
2x� 02 y� 12)+d21( y� 12& y&

2 )+h4(x� 02 , y� 12)

where

h1, 2=O[( |* i
1x01|+ | y11& y&

1 | )2], h3=O[( |* j
2x� 02 |+| y� 12& y&

2 | )2]

h4=O[*2j
2 x� 2

02+|* j
2x� 02 | | y� 12& y&

2 |+ | y� 12& y&
2 |3]

Lemma 4. The map Tij , by means of a linear change of coor-
dinates, can be brought to a C r&1-smooth area-preserving map of the
following form

X� =Y+.1
ij (X, Y )

(3.8)
Y� =Mij&Y2+A ijY&X+.2

ij (X, Y )

where

Aij =b21c12*& j
2 * i

1+b12 c21*&i
1 * j

2

Mij =d12d 2
21*&2i

1 *&2j
2 (1+:ij )[c21* j

2x+
2 (1+ j* j

2 u (2)
1 x+

2 y&
2 )

(3.9)
&* i

1 y&
1 (1+i* i

1u (1)
1 x+

1 y&
1 )+O(*2i

1 +*2j
2 )]

and .ij � 0, :ij � 0 as i, j � �. In addition, the domain of definition of map
(3.8) contains the rectangle |X |�C0 |*1| &i |*2 | & j, |Y |�C0 |*1|&i |*2 | &2j

where C0 is a positive constant independent of i and j.
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Proof. Introduce the following coordinates

x01&x+
1 =!1 , x02&x+

2 =!2 , y11& y&
1 ='1 , y12& y&

2 ='2

(3.10)

where

|!1|�=+
1 , |'1|�=&

1 , |!2 |�=+
2 , |'2 |�=&

2 (3.11)

and =+
s and =&

s are diameters of the neighbourhoods 6 +
s 6 &

s , respectively,
s=1, 2.

In virtue of (3.7), the map Tij has the following form in coordinates
(3.10)

!� 2=a12* i
1!1+b12 '1

+a12* i
1 x+

1 (1+i* i
1x+

1 y&
1 (1+ } } } )

+O(i*2i
1 ( |!1|+ |'1| )+'2

1)

* j
2'� 2(1+ j* j

2O( |!� 2 |+|'� 2 | ))=c12* i
1!1+d12'1+c12* i

1x+
1 (1+ } } } )

&* j
2 y&

2 (1+ j* j
2x+

2 y&
2 (1+ } } } ))

+O(i*2i
1 ( |!1|+ |'1| )+'2

1)
(3.12)

!� 1=a21* j
2!� 2+b21 '� 2

+a21* j
2 x+

2 (1+ j* j
2 x+

2 y&
2 (1+ } } } ))

+O( j*2j
2 ( |!� 2 |+ |'� 2 | )+'� 2

2)

* i
1 '� 1(1+i* i

1O( |!� 1|+|'� 1| ))=c21* j
2!� 2+d21'� 2

2+c21* j
2x+

2 (1+ j* j
2x+

2 y&
2 u (2)

1 )

&* i
1 y&

1 (1+i* i
1x+

1 y&
1 u (1)

1 )

+O(*2i
1 +*2j

2 )+O( j*2j
2 ( |!� 2 |+|'� 2 | )+'� 3

2)

where we denote by ellipsis, here and below at the proving the lemma,
terms which are independent of coordinates and tend to zero as i, j � �.

Shifting coordinates

!2 � !2&a12* i
1x+

1+
b12

d12

(c12* i
1 x+

1 &* j
2 y&

2 )(1+ } } } )

!1 � !1&a21* j
2x+

2 (1+ } } } )

'1 � '1+
1

d12

(c12 * i
1 x+

1 &* j
2 y&

2 )(1+ } } } )
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brings (3.12) to the form

!� 2=a12* i
1!1+b12 '1+O(i*2i

1 ( |!1|+|'1| )+|'1| )2)

* j
2 '� 2(1+ j* j

2O( |!� 2 |+ |'� 2 | ))=c12 * i
1!1+d12 '1+O(i*2i

1 ( |!1|+|'1| )+|'1| )2)

!� 1=a21* j
2!� 2+b21 '� 2+O( j* j

2( |!� 2 |+|'� 2 | )+|'� 2
2)

* i
1 '� 1(1+i* i

1 O( |!� 1|+|'� 1| ))=c21 * j
2!� 2+d21 '� 2

2++1

+O( j |* j
2 |( |!� 2 |+|'� 2 | )+|'� 2 |3) (3.13)

where

+1=[c21* j
2x+

2 (1+ j* j
2u (2)

1 x+
2 y&

2 )&* i
1 y&

1 (1+i* i
1u (1)

1 x+
1 y&

1 )+O(*2i
1 +* j

2)]

We solve now from the first and second equations of (3.13) coor-
dinates !� 2 and '� 2 with respect to !1 and '1 :

!� 2=a12* i
1!1+b12 '1+O(i*2i

1 ( |!1|+ |'1| )+|'1| )2)
(3.14)

'� 2=*& j
2 [c12 * i

1!1+d12'1+O[ j |*2 | j ( |'1|+|* i
1 !1|+'2

1)]]

Consider the following linear change of coordinates

u=
1

d12

!1 , v=c12* i
1!1+d12'1 (3.15)

We have from here

!1=d12u, '1=
1

d12

v&c12 * i
1u

In virtue of (3.14) and (3.15), coordinates !� 2 and '� 2 depends on u and v in
the following way

!� 2=a12* i
1!1+b12 '1+ } } } =a12d12* i

1u+
b12

d12

v&b12c12* i
1u)+ } } }

=* i
1 u(a12 d12&b12c12)+

b12

d12

v+ } } } =* i
1u

b12

d12

v+O(i*2i
1 ( |u|+|v| )+v2)

'� 2=*& j
2 [v+O[ j |*2 | j ( |v|+|*1| i |u| )+v2+|*1| i |u| |v|]]
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Using these relations we bring Tij to the following form (in coordinates u
and v):

u� =
b21

d12

*& j
2 [v+O[ j |*2 | j ( |v|+|*1| i |u| )+v2+|*1| i |u| |v|]]

(3.16)

v� =c12* i
1!� 1+d12'� 1

=d12d21 *&i
1 *&2j

2 [v+O[ j |*2 | j ( |v|+ |*1| i |u| )+v2+|*1| i |u| |v|]]2

+v(b21c12*& j
2 * i

1+b12c21*&i
1 * j

2)+d12 c21* j
2u(1+O(i* i

1u))++2

where +2=d12 *&i
1 (1+ } } } ) +1 .

Now, we rescale the coordinates in the following way

u=&
b21

d 2
12d21

* i
1 * j

2X, v=&
1

d12d21

* i
1*2j

2 Y (3.17)

Then, the map (3.16) is written in the form

X� =Y+ } } }
(3.18)

Y� =&Y 2+Y(b21c12*& j
2 * i

1+b12c21*&i
1 * j

2)+b21c21X+Mij+ } } }

=&Y2+AijY&X+M ij+ } } }

where formula (3.9) takes place for Aij and Mij and the dots stand for terms
tending to zero as i, j � �.

We note finally, that the map Tij , written in coordinates (X, Y ), has
a big domain of definition. Really, it follows from (3.11), (3.15) and (3.17)
that variables X and Y may take any values from the following intervals
|X |�C1 |*1|&i |*2 |& j =+

1 and |Y |�C1 |*1| &i |*2 |&2j =&
1 where C1 is a

positive constant. This completes the proof of the lemma.
It is seen from (3.9) that the rescaling parameter Mij can take any

finite values only for those i and j at which the quantity c21 * j
2x+

2 &* i
1 y&

1

can be made how much small in order to compensate the how much big
factor *&2i

1 *&2j
2 . By Lemma 3 it is possible only for those i and j at which

the intersection of the horseshoe T21_12
j with the strip _01

i is irregular.
Below we will consider only those i and j which satisfy the inequality

|c21 * j
2x+

2 &* i
1 y&

1 |�|*1| i�2 |*1| i (3.19)
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First of all, we will prove that inequality (3.19) can have infinitely
many integer solutions with respect to i and j. For this end, we rewrite
(3.19) in the following form

* i
1 y&

1 (1&* i�2
1 �y&

1 )�c21* j
2x+

2 �* i
1 y&

1 (1+* i�2
1 �y&

1 )

and take the logarithm. As result, we obtain the inequality

|i& j%+{|�
|*1| i�2

y&
1 ln |*&1

1 |
(3.20)

which is equivalent to (3.19) (modulo terms in (3.20) of the order O( |*1| i )).
Here, % and { are the quantities from (1.5) and (1.6).

Lemma 5. For any { and any functions &1
ij and &2

ij which are con-
tinuous in % and { and such that &1

ij<&2
ij and &1

ij , &2
ij � 0 as i, j � �, the

inequality

&1
ij<i& j%+{<&2

ij (3.21)

has infinitely many integer-valued solutions for a set of values of % which
is dense in R1.

Apparently, this result is well known in the arithmetical number
theory (in any case, similar results are in refs. 33 and 34), but we give its
proof for completeness. Let us show that in the interval $0=(%0&=, %0+=),
for any %0 and =>0, there exist such values of % that inequality (3.21) has
infinitely many integer-valued solutions. Let %1 # $0 and %1>%0 . Then, the
straight lines y&x%1+{=0 and y&i%0+{=0 form an angle inside which
a countable set of points with integer-valued coordinates lies. Since &ij � 0
as i, j � � and &ij are continuous in %, there exists an interval $1/
(%0 , %1)/$0 such that inequality (3.21) has an integer-valued solution
(i=i1 , j= j1) for every % # $1 . Analogously, in the interval $1 we find a
subinterval $2 such that for % # $2 inequality (3.21) has now two integer-
valued solutions (i1 , j1) and (i2 , j2). Acting in this way, we obtain an
infinite sequence of embedded intervals $0#$1# } } } #$n# } } } such that
inequality (3.21) has n integer-valued solutions (i1 , j1), (i2 , j2),..., (in , jn)
for % # $n . Let %* be a value of % such that %* # $n for any n, then inequality
(3.21) has infinitely many integer-valued solutions at %=%*. This com-
pletes the proof of the lemma in virtue of the arbitrariness of choice of
initial %0 and =.

By Lemma 5, inequality (3.20) (and, hence, (3.19)) has solutions with
how much large i and j.
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Lemma 6. Let i and j satisfy (3.19). Then, Mij takes values from the
interval

(&C2*&2j
2 |*1|&i�2, C2*&2j

2 |*1|&i�2) (3.22)

where C2 is a positive constant independent of i and j, and Aij is represented
in the form

Aij=
b12 y&

1

x+
2

&
c12x+

2

y&
1

+O( |*1 | i�2) (3.23)

Proof. If to substitute into (3.9) the boundaries of interval (3.19),
then we obtain inequality (3.22).

It follows from (3.19) that

| y&
1 &c21x+

2 * j
2*&i

1 |�|*1 | i�2

and, hence, for such i and j the following equality takes place

* j
2 *&i

1 =
y&

1

c21x+
2

+O( |*1| i�2) (3.24)

Thus,

Aij=b21c12* i
1*& j

2 +b12c21* j
2 *&i

1

=b21c12

c21x+
2

y&
1

+b12c21

y&
1

c21x+
2

+O( |*1 | i�2)

=
b12 y&

1

x+
2

&
c12x+

2

y&
1

+O( |*1 | i�2)

The lemma is proved.

Lemma 7. The quantities

b12 y&
1

x+
2

,
c12x+

2

y&
1

,
c21 x+

1

y&
2

(3.25)

do not depend on choice of pairs of heteroclinic points of the orbits 112

and 121 .
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Proof. Note, that the first two quantities in (3.25) depend only on
coefficients of the global map T12 . Hence, it is sufficiently to check the
invariance of these quantities with respect to choice of pairs of heteroclinic
points of the orbit 112 . It is clear also that for this end it is sufficiently to
prove the invariance with respect to choice of the following pairs of
heteroclinic points: (a) T &1

01 (M &
1 ) and M +

2 ; and (b) M &
1 and T02M +

2 .
In the case (a), the map T $12#T12 T01 : T &1

01 6 &
1 � 6 +

2 will play a role
of the global map T12 . In virtue of (2.6) and (1.2), T $12 can be written as
follows

x� 02&x+
2 =a12 *1x$11+*&1

1 b12( y$11&*1 y&
1 )+ } } }

y� 02=c12*1x$11+*&1
1 d12( y$11&*1 y&

1 )+ } } }

Thus, b$12=*&1
1 b12 , c$12=*1c12 , y1

&$=*1 y&
1 , x2

+$=x+
2 . This implies that

b$12 y1
&$

x2
+$

=
*&1

1 b12 *1 y&
1

x+
2

=
b12 y&

1

x+
2

c$12x2
+$

y1
&$

=
*1c12x+

2

*1 y&
1

=
c12x+

2

y&
1

In the same way there is proved the invariance of the quantities b12 y&
1 �x+

2

and c12x+
2 �y&

1 in the case (b). Here, a role of T12 will be played by the map
T $12#T02T12 : 6 &

1 � T026 +
1 , for which b$12=*2b12 , c$12=*&1

2 c12 , y1
&$=

y&
1 , x2

+$=*2x+
2 .

The quantity c21x+
1 �y&

2 (the third quantity in (3.25)) depends only on
coefficients of the map T21 . Its value is not changed if to choose instead the
pair M &

2 and M +
1 the following ones: (a) T &1

02 (M &
2 ) and M +

1 ; and (b)
M&

2 and T01M +
1 . Indeed, in the case (a) T $21#T21T02 : T &1

02 6 &
2 � 6 +

1

and, in virtue of Lemma 1 and (1.3),

c$21=*2c21 , y2
&$=*2 y&

2 , x1
+$=x+

1

In the case (b) T $21#T01T21 : 6 &
2 � T016 +

1 and

c$21=*&1
1 c21 , y2

&$= y&
2 , x1

+$=*1x+
1

Evidently, that the value of quantity c$21x1
+$ �y2

&$ is equal to c21x+
1 �y&

2 in
both cases. The lemma is proved.
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These lemmas show that, for a countable set of integers i and j (satis-
fying (3.20)), the map Tij is close to the following map HM

x� =y
(3.26)

y� =M& y2+Ay&x

where A=(b12 y&
1 �x+

2 )&(c12x+
2 �y&

1 ) (Lemma 6) and coordinates (x, y)
and parameter M can take arbitrary finite values (Lemmas 4 and 6). Note,
that map HM , by shifting origin and changing the parameter, can be
brought to the following standard conservative Henon map

x� = y, y� =1&ay2&x

Fig. 8. The structure of fixed points for the conservative Henon map: (a) the parabolic point
(&1=&2=+1) at M=M0 ; (b) the saddle and elliptic fixed points at M0<M<M? ; (c) two
saddle fixed points and elliptic cycle of period 2 at M>M? .
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The map HM is remarkable in that sense that bifurcations of its fixed
points are well known. Namely, HM has no fixed points at M<M0 , where
M0=&(A&2)2�4; it has a parabolic fixed point (unstable) with eigen-
values &1=&2=1 at M=M0 (Fig. 8a) and a parabolic fixed point (stable)
with eigenvalues &1=&2=&1 at M=M?=(A+2)(6&A)�4; at M>M?

the last point becomes the saddle-minus fixed point (with negative eigen-
values) in whose neighbourhood an elliptic point of period 2 is appeared
(Fig. 8c). Especially, we turn our attention to the fact that HM has an ellip-
tic fixed point (Fig. 8b) at M0<M<M? (its eigenvalues are &1, 2=e\i� at
M=M�= 1

4 (A&2 cos �)(4&A&2 cos �)). It was established in ref. 35
that in a neighbourhood of this point (if � � [?�2, 2?�3]) the map HM can
be written in the complex form (1.4) where

h(�)=&2
(1+cos �)(4 cos �+1)

(2 cos �+1) sin �

Hence, the coefficient h(�) is not equal to zero if �{arccos(&1�4). There-
fore, according to the KAM-theory, the pointed out fixed point is generic,
except for the cases where � # [?�2, arccos(&1�4), 2?�3].

4. PROOFS OF THE THEOREMS

As we noted in Section 1, there exist seven types of diffeomorphisms of
the third classes (see Table 1). We will prove Theorems 1, 2 and 3 only for
the case of diffeomorphisms from H 1

3 (i.e., for the case where parameters
*1 , *2 , c21 and d21 are positive), since in other cases the proofs are rather
analogously.

Let i and j satisfy inequality (3.19). As it follows from Lemmas 4�7, in
this case the map Tij is brought to a C r&1-smooth area-preserving map of
the following form

x� =y+.~ 1
ij (x, y)

(4.1)
y� =Mij& y2+Ay&x+.~ 2

ij (x, y)

where functions .~ ij (x, y) tend to zero together with derivatives (up to
order (r&2)) as i, j � �; A=b12 y&

1 �x+
2 &c12x+

2 �y&
1 is a constant inde-

pendent of choice of heteroclinic points (Lemma 7). By Lemma 4 the
domain of definition of this map contains the rectangle

|x|�C0 |*1|&i |*2 | & j, | y|�C0 |*1|&i |*2 |&2j
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Recall also (Lemmas 4 and 6) that the range of values of the parameter Mij

contains the interval

(&C2*&2j
2 |*1|&i�2, C2*&2j

2 |*1|&i�2)

Here C0 and C2 are some positive constants independent of i and j.
Note, that the map HM has a generic elliptic fixed point at every value

of M from the interval M0<M<M?�2 where M0=&1
4 (A&2)2, M?�2=

1
4A(4&A). Then, there exists such =ij>0, =ij � 0 as i, j � �, that the map
Tij (which can be brought to form (4.1)) has a generic elliptic fixed point
for all values of Mij satisfying the inequality M0+=ij<Mij<M?�2&=ij . In
virtue of (3.9), this inequality can be written in the form

M0

d12 d 2
21

*2i
1 *2j

2 <c21* j
2x+

2 (1+ j* j
2u (2)

1 x+
2 y&

2 + } } } )

&* i
1 y&

1 (1+i* i
1u (1)

1 x+
1 y&

1 + } } } )<
M?�2

d12d 2
21

*2i
1 *2j

2 (4.2)

Taking the logarithm of (4.2) we obtain the following inequality

&~ 1
ij<i& j%+{&

1
ln |*1|

ln
1+ j* j

2u (2)
1 x+

2 y&
2

1+i* i
1u (1)

1 x+
1 y&

1

<&~ 2
ij (4.3)

where the functions &~ 1
ij and &~ 2

ij depend continuously on % and { and are such
that

(1) &~ :
ij=O(*2i

1 +*2j
2 ),

(2) &~ 1
ij<&~ 2

ij ,

(3) &~ 2
ij&&~ 1

ijt(* i
1*2j

2 ).

Note, that for such i and j inequalities (3.20) and (3.19) are fulfilled
automatically. Since itj% and c21 x+

2 * j
2t* i

1y&
1 in this case, it follows that

aij#
1

ln *1

ln
1+ j* j

2u (2)
1 x+

2 y&
2

1+i* i
1u (1)

1 x+
1 y&

1

= j* j
2

x+
2 y&

2

ln *1 \u (2)
1 &%u (1)

1

c21x+
1

y&
2 ++O(* j

2)

and inequality (4.2) coincides with (1.8). This completes the proof of
Theorem 1.

By Lemma 5, inequality (4.3) has infinitely many integer-valued solu-
tions at a dense (in the plane (%, {)) set I of values of % and {. Let (%*, {*) # I
and (in , jn), n=1, 2,..., be the corresponding countable set of integer-
valued pairs such that inequality (4.3) is fulfilled at i=in , j= jn . Then,
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diffeomorphism T%*{* # H3 possesses infinitely many single-round elliptic
periodic orbits each of which has exactly one intersection point with every
strip _01

in
/6 +

1 and _02
jn

/6 +
2 . These strips are with different numbers and do

not intersect. Hence, the single-round elliptic periodic orbits are isolated
and since they are generic, every of these elliptic periodic orbits is surroun-
ded by the own elliptic (periodic) island. Thus, diffeomorphism T%*{* # H3

possesses infinitely many elliptic periodic islands. Since in , jn � � as
n � �, the closure of the pointed out countable set of elliptic orbits
(islands) contains the saddles O1 and O2 and also the heteroclinic orbits
112 and 121 . Note, that functions &~ 1

ij and &~ 2
ij (from (4.3)) are, by conditions

(1)�(3), exponentially small. This means that if diffeomorphism T has
infinitely single-round elliptic periodic orbits, than its invariants % and { are
connected by strong arithmetical relations: % and { must admit ``exponen-
tially good nonhomogeneous approximations by rational numbers.'' This
completes the proof of Theorem 2.

By Lemma 7, coefficient Q=(u (2)
1 &%u (1)

1 (c21x+
1 �y&

2 ), does not depend
on choice of pairs of heteroclinic points. (Moreover, the quantity x+

2 y&
2 Q

does not depend also on rescaling the variables). If Q{0, then inequality
(4.3) can possess infinitely many integer solutions at irrational % only.
Indeed, for a rational % the straight line j=i%&{ either lies on a finite dis-
tance from the points of the integer-valued lattice or contains a countable
set of such points. In the first case, inequality (4.3) can not have solutions
for large i and j since |aij |+|&~ :

ij | � 0 as i, j � �. In the second case, this
fact is true also because &:

ij=o(aij ), i.e., here the set (on the plane) defined
by inequality (4.3) does not contain any points of the straight line
y=x%&{.

We will prove now Theorem 3. Let T # H3 . We include T into a one
parameter family T% of diffeomorphisms on H3 and assume that T=T%0

.
By Lemma 4, in the case where diffeomorphism T% has a parabolic single-
round periodic orbit with multipliers &1=&2=+1 (whose point in 6 +

1 is
a fixed parabolic point for the map Tij ) the following equality is fulfilled

d12d 2
21 *&2i

1 *&2j
2 (1+:ij )[c21* j

2x+
2 &* i

1y&
1 +O(i*2i

1 + j*2j
2 ]=M0+;ij

(4.4)

where ;ij � 0 as i, j � �. Equality (4.4) can be rewritten in the form

c21 * j
2x+

2 (1+O( j* j
2)=* i

1y&
1 (1+O(i* i

1) (4.5)

If to take the logarithm of (4.5), then one can easily found the corre-
sponding value of %=%+1

ij . Namely,

%+1
ij =

i
j
+

{
i
+O(i* i

1+ j* j
2) (4.6)
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Evidently, such values of % are dense in an interval (%0&=, %0+=) for any
=>0.

It is shown analogously that values %=%&1
ij are dense in the interval

where %&1
ij is a value of % at which the map Tij possesses a parabolic fixed

point with eigenvalues &1=&2=&1. In this case relations are fulfilled
which differ from (4.6) in terms of the order O(* i

1 * j
2).

This work is supported in part by RFFI-grant No. 99-01-00231,
INTAS-grant No. 97-804 and scientific program ``Russian University''��
project No. 1905.
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